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A synthetic approach to the problem of the adhesive contact of axisymmetric elastic 
bodies is proposed. A convenient and general formulation is thus obtained. which is 
shown to yield directly most of the useful models. In particular, the roles of the shape of 
the indenter on the one hand, and of the nature of the attractive interactions on the other 
hand are clearly separated. By nature, this approach can also be used in the case where 
the bodies are in interaction but not in contact. This results in a consistent treatment of 
long-range interactions and contact properties. 

Ke>wor.ds: Contact mechanics: Adhesion; Surface forces 

1. INTRODUCTION 

The problem of the adhesive contact of elastic bodies is basically 
well understood. Historically, the first attempt, by Derjaguin, in his 
otherwise famous paper on the Derjaguin approximation [l], was quite 
disappointing: he found a pull-off force equal to mvR, where IV is the 
adhesion energy and R the radius of the sphere. However, this result 
was at  variance (“Daher ergibt sich ein zweimal so kleiner Wert [. . .]” 
[ 11) with the just-discovered Derjaguin approximation, which describes 
the non-contact part of the same force curve and predicts a force 
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144 A.-S. HUGUET AND E. BARTHEL 
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twice as large at  zero distance. This was the first attempt at matching 
long-range forces and pull-off force. Later, Derjaguin apparently re- 
conciled his theories, since the DMT model [2] does predict a pull- 
off force equal to 27rwR. As a result, continuity between the contact 
and non-contact parts of the force curve was restored (Fig. I ) .  There 
remained a question, however: the slope of the DMT curve at zero dis- 
tance is zero, while a typical non-contact force curve is expected to 
exhibit a non-zero derivative at  zero distance. Consequently, there 
apparently still is a discontinuity in the derivative of the force curve, a 
somewhat puzzling result. In addition, in the meantime, Johnson, 
Kendall and Roberts had put forward a model [3] giving a pull-off 
force equal to 37rwR/2. The ensuing controversy was solved when, 
following Tabor [4], numerical computations [5 - 81 showed that the 
two models could be considered as limits in a continuous transition. 
The relevant parameter was shown to be the ratio of the gap between 
the surfaces just outside the contact zone and the range of the inter- 
actions (this ratio is denoted [5,  91 p or A). The JKR model applies 
when X is much larger than unity. In this case, clearly, the non-contact 
part of the force curve is almost non-existent. The DMT model, on the 
contrary, applies when the range of the interactions is large (A << l), 
and matching the two parts of the force curve remains an open issue. 

long range 
forces contact 

L 
Distance from surface 0 Depth of penetration 

FIGURE 1 Typical matching problem for the non-contact (long-range forces) part of 
a force curve described by the Derjaguin approximation and the contact part of the same 
force curve described by the DMT model: although the force curve is continuous at zero 
distance (equal to 2nRw). the derivative is not (cf. also Fig. 6). 
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SURFACE FORCES AND ADHESIVE CONTACT 145 

Simultaneously, the JKR model was studied through a rather dif- 
ferent approach, in terms of fracture mechanics [lo- 121. The cul- 
minating point of the fracture mechanics approach was reached in 
1992, when Maugis proposed a Dugdale model for the adhesion of 
spheres [9]. This paper brought a number of fruitful ideas, allowed the 
first analytical description of the transition, and trigerred a number of 
additional contributions along this line [ 13- 171. 

Following these recent advances, we try to provide a compact 
general formulation of the adhesive contact of axisymmetric elastic 
bodies and also to describe the non-contact part of the experimental 
curves within the same theory. 

Thus, we first give general expressions for the force and penetration 
assuming a given attractive stress distribution outside the contact zone 
and a given shape of the indenter. As a result of the adhesive process, 
two phenomena are simultaneously observed: compared with the 
non-adhesive case (Hertz [IS]), 

1. the contact zone increases (as in the JKR model); 
2. there is an additional tensile force (as i n  the DMT model). 

We discuss their relative weight in the general solution in terms of 
lateral extension of the attractive intermtion zone c (Fig. 2). In this 

FIGURE '2 Typical gap profile (full line) and stress distribution (dashed) of an indenter 
in adhesive contact with a flat non-deformable surface. The radius of the contact zone is 
ci, the radial extension of the interaction zone is c. 
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146 A . 4 .  HUGUET AND E. BARTHEL 

manner, the mechanics of the adhesive contact problem, and in 
particular of the J K R  and DMT limits, can be obtained. Up to that 
point the description can be applied to an arbitrary type (in terms of 
range or  reversibility, for example) of attractive interaction. 

Then, we will assume a more specific description of the adhesive 
process in terms of interaction porential and, thus, of adhesion erzergy. 
Using the previous expressions for the mechanical response of the 
surface, we show in the general case that, when the interaction is 
short-ranged, the contact-zone-increase effect accounts for the full ad- 
hesion energy and, thus, obtain the generalization of the JKR model 
to bodies of arbitrary shapes. We also show that the linear elastic 
fracture mechanics approach (in terms of energy release rate) is easily 
derived from the previous expressions. In the case of long-range 
interactions, we show that the DMT limit is obtained only for para- 
boloidal bodies (which is the usual approximation for the sphere). 
The same limit is either basically useless or does not exist for other 
shapes. For intermediate cases, we propose a rationalization of the 
approximation schemes developed so far. 

Finally, we outline the treatment of the non-contact part of the force 
curve and give an example of the consistent treatment of long-range 
and contact parts of an experimental force curve. This example is 
illustrative of the improvement obtained by the proposed modeling. 

2. DESCRIPTION OF THE PROBLEM 

2.1. Self-consistency 

The adhesive contact between two bodies is a process which involves 
two phenomena: 

1. the interaction between the bodies, through surface forces, 
2. the mechanical deformation of the bodies. 

The complexity of the problem comes from the fact that these 
phenomena are interdependent: the mechanical deformation will ob- 
viously depend upon the interaction and the interaction will depend 
upon the distance between the surfaces and, hence, upon the de- 
formation of the bodies. I t  follows that a self-consistent solution is 
required. 
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SURFACE FORCES AND ADHESIVE CONTACT I47 

Note, however, that these two phenomena are also at work when the 
surfaces interact without contact. In  this case, however, one will usual- 
ly consider that the surfaces are non-deformable - because mechani- 
cal instability of the experimental device will usually occur before the 
deformations are sizable - and the Derjaguin approximation [ I ]  will 
be used. That this is not necessarily correct will be shown below. 

2.2. Contact Zone and Interaction 

The initial question one is faced with, for a given problem, is thus to 
describe both the mechanical behavior of the solids and their inter- 
action. However, in doing so, one should keep in mind that the divi- 
sion of the phenomena between surface interaction and mechanical 
behaviour may in some cases be quite artificial. 

More specifically, i t  is clear that the interaction potential between 
surfaces is always repulsive at small distance. This is due to Born re- 
pulsion between atoms, and ensures the stability of matter. Now. i t  is 
not trivial to get an accurate description of this repulsion. An mi' hoc 
potential like the d-12 used in the Lennard-Jones potential is simply 
indicative of the trend. Actually, an approximation scheme can be 
devised, which retains the main feature of this repulsive part of the 
potential: its very steep variation with distance. Thus, a very small 
change in distance will induce a very large change in interaction. Or, 
conversely, the interaction can take on an arbitrary value ~ within the 
bounds of allowed values (maximum tensile stress and elastic limit) ~ 

with almost no change in separation. As a result, the problem can be 
reformulated in the following way: there is a zone in which the dis- 
tance is prescribed and the stress is free. This is, of course, the con- 
tact zone. Thus, we have turned a prescription on the interaction into 
a prescription on the mechanics: the displacement is fixed in the con- 
tact zone. 

As a result, there are, broadly speaking, two families of approaches: 

I .  one can prescribe the full interaction (attractive and repulsive parts) 
and, from the knowledge of the surface response to externally- 
applied stress, try and solve the self-consistent problem [5,7,8, 191 

or 
2. one can exclude the very short range repulsive part of the interac- 

tion and work out the solution using mixed boundary conditions 
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I48 A.-S. HUGUET AND E. BARTHEL 

for the mechanical side of the problem: the displacement is pre- 
scribed inside the contact zone and the stress outside [2,3,9,16, 
18,201. 

The interactions outside of the contact zone may be very diverse. 
The many types of interactions known in the field of surface forces 
may be operating - chemical interaction, electrostatic, electrical 
double-layer, meniscus force, . . . - including the van der Waals force, 
which, although a body force, turns into a surface force when volume 
integration is performed on bodies with small curvature [21]. In ad- 
dition, non-conservative forces, like viscous dissipation at the pe- 
riphery of the contact zone, may also be considered [lo]. In fact, the 
approach we present is independent of the nature of the interaction 
as long as it is a surface interaction, i.e., i t  results in a surface stress 
distribution. 

Once these questions have been sorted out, we cannot proceed until 
the description of the mechanical behaviour of the surface under given 
boundary conditions is known. 

3. SURFACE ELASTICITY: USEFUL RESULTS 

This technical section deals with the response of an elastic flat surface: 
the aim is to formulate general expressions for the total force, dis- 
placement and elastic energy in terms of an auxiliary function, g. We 
also show how g depends upon the surface stress distribution, or 
upon the normal surface displacement. 

The present formulation relies upon results for the description of the 
elastic response .of a flat surface known in the literature [22-291. We 
have tried, in the Appendices, to provide a complete and “minimal” 
(in term of complexity) derivation of those results which are neces- 
sary here by consistently using the Fourier transform method (as 
suggested by Landau [30], page 26, note I ) .  Although it differs in a 
number of details, this approach is, thus, essentially Sneddon’s [22]. 
We believe, however, that the present derivation side-steps several 
more difficult points in Sneddon’s texts. In addition, it directly pro- 
vides some necessary relations (Eqs. (3.10) and (3.1 I) )  usually not re- 
ported in the literature. 
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SURFACE FORCES A N D  ADHESIVE CONTACT I49 

3.1. Surface Displacement 

Let us assume linear elastic behaviour, a frictionless contact and an 
axisymmetrical geometry. In particular, we are interested in the sur- 
face displacement, ~ ( r ) ,  induced by a normal stress distribution at the 
surface, F,(r). 

We will be using the result that: 

where the g function thus introduced is 

and 

E 
K =  (3.3) 2( I - u') ' 

Note the factor 3/8 with the frequent definition 

4E 
3( 1 - u 2 )  

K =  (3.4) 

which is linked to the case of the spherical indenter, and the factor 1/2 
with the usual definition 

The important fact here is that according to Eq. (3.l), the surface 
displacement at r is obtained through the datum of the auxiliary 
function g(s) for s < r only. Conversely, g(r )  is known from the datum 
of F,(s) for s > r only (Eq. (3.2)). This property will prove invaluable 
in the context of mixed boundary conditions which appears in the 
adhesive contact problem (Section 4). 

3.2. Surface Stress 

One of the main features of Eqs. (3.1) and (3.2) is that they can be 
inverted. In the present derivation (Appendices), which is based on the 
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I50 A,-S. HUGUET AND E. BARTHEL 

successive use of Hankel and cosine transforms, this property stems 
from the fact that each of these transforms is invertible. Explicitly, 
one gets: 

and 

or 

Equations (3.7) and (3.9) were obtained by integrating by parts. We 
also provided for the possibility that g be discontinuous by intro- 
ducing the jump Ag(.pO) of g at so. Equivalent relations were intro- 
duced by Sneddon under the denomination of Abel's relation [3 11. 

Here again, Eqs. (3.6) or (3.7) express g(t)  from the datum of u(r)  
for t > r only, while the surface stress at s is obtained through the 
datum of the auxiliary function g( t )  for s < t only (Eqs. (3.8) and 
(3.9)). 

Note that this is just the general form of the results Maugis used in 
his paper [9]; although, since these equations do not exist as such in 
Sneddon's papers, he had to build them up, in a special case, by linear 
superposition of two particular cases [31,32]. 

3.3. Force and Energy 

Computing the total force, F, applied to one of the bodies through 
the interface as a function of the auxiliary function, g, we obtain 

(3.10) 
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SURFACE FORCES AND ADHESIVE CONTACT 151 

Similarly, the total mechanical energy, &, is 

(3.1 I )  

Following our approach (Appendix B), these relations are again 
obtained through general properties of the Hankel and cosine 
transforms. 

4. GENERAL EQUATIONS FOR THE AXGYMMETRICAL 
CONTACT 

We now further investigate the properties of the g function. We show 
that, in the contact problem, g can be calculated from the boundary 
conditions - i .e.,  the shape of the indenter and the nature of the 
interactions - from Eqs. (3.1) and (3.2) and their inverses. Further, 
we also show that, in addition to the total force and elastic energy 
(Section 3.3). the pcnetrnrion of the indenter can also be expressed 
as a function of g. thus completing the general solution to the con- 
tact problem. 

Let us consider an axisymmetrical deformable body with convex 
shape h(r)  > 0  (with h(0)= 0) in contact with a perfectly rigid flat 
plane. We assume there is a contact zone of radius a. Outside the 
contact zone, we suppose there is a normal stress distribution, p ( r ) ,  
which acts on the bodies. N o  specification as to the form and origin 
of this stress distribution is given. In particular, no reference to the 
adhesive mechanism is used for now. 

The boundary conditions are, thus: 

u , ( r )  = 6 - h ( r )  when r < n, (4.1 1 
F , ( r )  = - p ( r )  when r > (1.  (4.2) 

Since the interaction outside the contact zone is assumed to be 
attractive, p > 0. Inward displacement, u,. is counted positive. Simi- 
larly, the penetration, 6, will be counted positive if interpenetration 
would result, were the bodies non-deformable. 
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The solution to the adhesive contact problem then proceeds as 
follows: from the boundary condition (4.1) [resp., (4.2)] and Eq. (3.7) 
[resp., (3.2)], the g function can be calculated for r < a [resp., r > a]. 
Matching these two parts of the function g for continuity (which re- 
sults from the continuity of stress at a) gives an equation from which 
the penetration is obtained. Then, the total force is calculated through 
(3.10). Of course, all the other quantities in the problem can also be 
derived from g, such as the stress distribution inside the contact 
zone (Eq. (3.8)), the surface displacement outside the contact zone 
(Eq. (3.1)) and the total elastic energy (Eq. (3.1 1)). 

4.1. A Singular Case: The Flat Punch 

As a first example, we show how to calculate the solution for the 
adhesionless ( p ( r )  = 0 for r > a) rigid flat punch of radius a indent- 
ing the plane down to a penetration bf,, a well-known result due to 
Boussinesq [20]. We here have h = 0. Let us determine the g func- 
tion from the boundary conditions. We use Eqs. (3.7) and (3.2) from 
which we get: 

g ( t )  = Kbfp when t < a,  (4.3) 

g ( t )  = 0 when t > a. (4.4) 

As a result, from Eq. (3.10), we obtain the relation between force and 
displacement 

In addition, from Eqs. (3.1) and (3.9), we obtain the information 
complementary to the boundary conditions, i.e., the displacement 
outside the contact zone and the stress distribution inside: 

(3 2 
u_,fp(r ,  z = 0) = -bfp arc sin 

K 
for r > a ,  (4.6) 

for r < u. (4.7) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
5
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1
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4.2. General Solution for Non-singular 
Indenter Shapes 

Let us now assume a regular shape for the indenter (i.e., with a 
continuous derivative). Under the external loading and the adhesive 
interaction, the indenter penetrates the plane and the contact radius 
reaches a value (7. We want to calculate expressions for the penetra- 
tion, 6, and the force, F, as a function of ( I .  Let us first calculate g .  
Denoting 

from Eqs. (3.7) and (3.3) we have 

g ( r )  = K ( 6  - 6 , ( t ) )  when t < ( I ,  (4.9) 

(4.10) 

4.2.1. penetration 

We now calculate the penetration. 5. If the shape of the indenting 
body, / I ,  and its derivative, h’, are continuous at a, then we have con- 
tinuity of the normal stress at a and, thus, continuity of g, which 
allows us to determine 6 in the following way. 

Let us first consider the case of the non-adhesive contact. We know 
from Eq. (4.10) that g(u)=O. Thus. the penetration is 

6 = 51,(n).  (4.1 I )  

We conclude that the function h l l ( f ) ,  which only depends upon the 
shape of the indenter, is the penetration which is necessary to obtain 
a radius of contact, u, in the absence of attractive interaction [31]. 
The function bo and all the subsequently-introduced functions are 
explicitly given for the case of the cone and the paraboloid in the 
Table. 
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154 A . 4 .  H U G U E T  A N D  E. BARTHEL 

TABLE 
different indenter shapes 

Values of the various expressions describing the adhesionless contact for two 

Similarly, in the case of the adhesive contact, the penetration, 6. is 
simply 

6 = &(a)  + - g ( a ) .  1 (4.12) 
K 

Equation (4.12) means that attractive interactions reduce the pen- 
etration necessary to reach a contact radius, a, by a distance, g(u)/K: 
(note that g(a) is negative by definition). This increase of the contact 
zone due to the adhesive interaction - for which we obtain a general 
formulation - is the central concept in the JKR approach [3]. It clear- 
ly appears as a competition between the interaction, as weighted in 
g(u), and the rigidity of the surface expressed by K. We, thus, observe 
that some increase of the contact zone will be observed for any 
stress distribution, although g(a) clearly emphasizes the contributions 
close to the contact zone. 

4.2.2. Force 

From Eqs. (3.10), (4.9) and (4.10), the total force is expressed as 

+m U 

S 
~ ( a )  = ~ o ( a )  + 4ag(u) + 4 d.ssp(s) arcsin- - 2 T l  dssp(s) ,  

(4.13) 

where Fo is the force necessary for the adhesionless indenter to reach 
a contact radius a and reads 

with 

(4.15) 
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SURFACE FORCES AND ADHESIVE CONTACT I55 

We can picture this Hertz-like repulsive contribution as the force 
required to push a flat punch down to a penetration 6 =&(a) minus a 
(positive) quantity which accounts for the reduction in resistance due 
to the upward sloping shape. 

In  order to describe the other contributions, which arise as a result 
of the attractive interaction, let us start from the adhesionless punch 
indenting the plane with a penetration 6 (Fig. 3a). The radius of 
contact is a,,,,, and the force is the bare Hertz contribution Fo(u,,,,). 
If we switch an attractive interaction on, then an additional surface 
displacement occurs (Fig. 3b), Eq. (3. I ) ,  which increases the contact 
radius to a. However, this additional displaceinent has to be cancelled 
inside the contact zone, due to the boundary condition Eq. (4.1). 
Thus, the stress distribution inside the contact zone rearranges, so 
that the boundary conditions be fulfilled inside the contact zone 
while preserving the continuity of the stress distribution at a. Thus, 
the final stress distribution inside the contact but close to the contact 
line is tensile (Fig. 2). 

As a result, the Hertz contribution increases to Fo(a). In addition, 
a tensile stress distribution develops inside the contact zone, which 
is determined by the final radius of contact and the external stress 

......... \ ............ .............. 2 
r 

-b 

FIGURE 3 G a p  profile of the indenter in contact with a flat non-deformable surface. 
(a) in the absence of attractive interaction; (b) with the additional displacement due to 
the attractive interactions alone; (c) with the additional displacement due to both the at- 
tractive interactions and the boundary conditions inside the contact zone. 
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156 A . 4 .  HUGUET AND E. BARTHEL 

distribution, and leads to the next two terms. Finally, the total force, 
F, breaks down into four components (Eq. (4.13)). The first term, 
Fo(a), in Eq. (4.13) is the usual Hertz repulsive (i.e., positive) com- 
ponent of the adhesionless punch with the final contact radius a. 
Thus, the increase in the contact zone has induced an increase in the 
repulsive Hertz term from Fo(ai,,) to &(a). The second and third 
terms, Fin,, and Fadd form the contribution from the attractive stress 
distribution inside the contact zone. Note that F,,,, (tensile) results 
from the global displacement, g(a ) /K  (flat punch displacement), inside 
the contact zone, and reflects the contact zone increase effect. It is 
partially offset by Fadd (compressive), which results from the cancel- 
lation of the surface displacement inside the contact zone due to the 
stress distribution outside. The last term, F,,, (negative), is the contri- 
bution from the stress distribution outside the contact zone. 

We are also in a position to discuss the relative weight of the ad- 
hesive contributions in terms of the radial extension of the surface 
stress distribution and compare with the standard theories. If this 
extension is large compared with the radius of contact, examination 
of the various expressions shows that Fext dominates and Finer and 
Fa& cancel at first order. Thus, the attractive stress is essentially 
outside the contact zone, does not bring about substantial increase 
of the contact zone but simply acts as an externally-applied force. 
This situation is reminiscent of the DMT model. On the contrary, if 
the range is small, en,, dominates and the other two interaction terms 
cancel at first order. Thus, the contact zone increase effect is domi- 
nant, and the attractive stress is essentially inside the contact zone. 
In this case, the picture which emerges from Eqs. (4.12) and (4.13) 
is the additional flat-punch retraction (cf: Section 4.1 with a displace- 
ment g ( a ) / K )  central to the JKR theory, and the contact is com- 
pletely described by the specification of g(a). 

As an illustration, let us consider the case where the attractive stress 
is a constant inside the interaction zone, as assumed by Maugis [9]. 
We assume a radius of contact and an interaction amplitude equal 
to unity. Figure 4 displays the ratio of the absolute value of the vari- 
ous interaction force terms in this case as a function of the extension 
of the interaction zone, c. 

Thus, we have given general expression for the two effects of at- 
tractive interactions: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
5
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



SURFACE FORCES AND ADHESIVE CONTACT 157 

1 2 3 .  4 
Radial extension (c) 

5 

FIGURE 4 Absolute value of the relative magnitude of the three force contributions 
due to the attractive interaction as a function of the radial extension of the interaction 
zone, ", in the Maugis model [9]. The stress amplitude. go, and the radius of contact N 

are chosen equal to unity. Note that F>,dd is positive, while F,,,, and F,,, are negative. 
At small radial extension, F,,,, dominates, while Fadd and F,,, cancel (JKR limit). At 
large radial extension, F,,, dominate, while F,,,,, and F;,dd cancel (DMT limit). 

1. by a wetting-like effect, they tend to increase the contact radius at a 

2. they contribute an overall attractive force, Fext. 
given penetration 

The general behaviour results from the sum of these effects. 

4.2.3. The Gap 

Since the interaction between the contacting bodies will depend upon 
(at least) the local value of the gap, the self-consistent treatment of the 
problem requires the knowledge of the shape of the gap outside the 
contact zone. Thus, in this more technical subsection, we consider 
the deformations outside the contact zone in more detail. 

Let us define the gap between the surfaces as 

[u (Y) ]  = u , ( r )  - 5 + h ( r ) .  (4.16) 

Naturally, [ ~ ( r ) ]  is zero inside the contact zone. Outside the contact 
zone, the only non-trivial contribution comes from the deformation 
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uz(r) ,  r > a. This deformation is the sum of the adhesionless term 

(4.17) 

and the term due to the adhesive interactions 

In particular, we observe that 

(4.19) 

Thus, as expected, if g is differentiable with a continuous deriva- 
tive (which implies the same regularity for Fz),  then the gap profile is 
regular. 

Note, however, that, when g ' ( t )  is increasingly peaked and tends to 
g ' ( t )  = Ag(a)S(t - a), that is to say when g tends to a function with a 
discontinuity Ag(a)  at a, we do  tend to the singular J K R  flat-punch 
deformation, u _ - . , ~ ~  (Eq. (4.6)), with displacement g ( u ) / K .  Thus, as is 
now well known, the singular J K R  case appears as a limit within a 
non-singular model. 

Up to now, we have given and investigated the general contact 
equations for a body with arbitrary shape and an arbitrary stress dis- 
tribution outside the contact zone. We have identified the contribu- 
tions of two rather different effects: for a given penetration, the part of 
the stress distribution far away from contact essentially leads to an 
overall additional attractive force, while no additional deformation 
close to the contact zone is incurred; the part of the stress distribution 
close to the contact zone essentially leads to an increase of the contact 
zone by a spreading-like effect described by the ratio g(a ) /K .  

5. SELF-CONSISTENT APPROACH 

We now tackle the self-consistent part of the approach. Up to now, 
no hypothesis as to the nature of the stress distribution outside the 
contact zone was made. Let us now assume that the stress outside 
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the contact zone is derived from some interaction potential between 
the surfaces, V([u]) .  An exact self-consistent approach, thus, requires 
that everywhere outside the contact zone, 

Now, as we have just seen, [ ~ ( r ) ]  also depends upon F,(s) in a non- 
trivial manner. This exact formulation is, thus, difficult to use directly, 
except for numerical calculations. 

Let us rather introduce a weaker (approximate) formulation of the 
self-consistent approach. The value of the potential for a zero surface 
separation is some non-zero adhesion energy, H’.  From this bare de- 
finition of the adhesion energy, we obtain the condition: 

( 5 . 2 )  

This approximate self-consistency equation will turn out to be quite 
sufficient to specify the stress distribution to first order outside the 
contact zone and, thus, describe the adhesive contact. 

We first examine the consequences of Eq. (5.2) in the case where 
the interactions are short-ranged. 

5.1. Short Range Interactions - The General 
JKR Model 

I f  the interaction range is small, the radial extension of the interac- 
tion will also be small, g’ is peaked around (i and, from Eq. (4.19), 
the dominant term in Eq. (5.2) will be the 3u-.int/3s term. Thus, 

(5.3) 

where the s and t factors in the integrals were replaced by n to first 
order since p ( s )  decreases rapidly outside the contact zone. As a result, 
in the case of short-range interactions. the self-consistency equation 
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boils down to 

Thus, g(u), which has been shown above to describe completely the 
adhesive contact in the present case, is determined as a function of w. 
The generalization of the JKR equations to an arbitrary shape of 
indenter clearly appears. 

5.1.1. Penetration and Force 

As a result of Eq. (5.4), 

( 5 . 5 )  g(u)  = -(7rwulC) I 12 

and, taking into account the considerations of Section 4.2.2, the 
penetration and force are then easily derived from their adhesionless 
counterparts through Eqs. (4.12) and (4.14): 

In particular, we clearly observe that the adhesive process is inde- 
pendent of the shape of the indenter. 

5.1.2. Fracture Mechanics Approach 

Maugis and Barquins have shown that the generalization of the JKR 
approach can be obtained under the viewpoint of fracture mechanics 
[lo- 121. They have used expansions of the Sneddon expressions to 
calculate the adhesion-induced stress intensity factor. We now show 
that the present formulation of the problem also allows a discussion 
of the same issue directly through the energy release rate. Following 
these authors, we assume that the interactions are infinitely short- 
ranged, so that 
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g ( r )  = 0 for r > a ,  (5.9) 

that is to say, there is an attractive stress distribution characterized 
by g(a) inside the contact zone, but the attractive stress distribution 
outside the contact zone has been shrunk to zero. Then, from Eq. 
(3.1 I ) ,  the mechanical energy, E, is 

2 "  
E =El d.sg2(s). (5.10) 

5.1.3. Equilibrium 

From a fracture mechanics viewpoint, the contact radius, a, is a 
thermodynamic quantity, and equilibrium is obtained if, for an ele- 
mentary variation in contact area, d A ,  the variation in mechanical 
energy, dE = GdA, is equal to the variation of the interfacial energy, 
M, dA, or, stated otherwise, if the adhesion energy, here rather acting 
as a surface tension, is equal to the energy release rate, G. 

Now, Eq. (4.9) shows that g(t) is independent of a for r < a.  Thus, 
at constant penetration, 6, 

(5.11) 

from which we again obtain Eq. (5.4). 

5.7.4. Stability 

Maugis has extensively studied the stability of the equilibrium in vari- 
ous cases. This point is all the more significant as instability means 
contact rupture: hence, the pull-off force is determined by the stability 
condition. The system is stable if 

d2E - > o  dA2 (5.12) 

Most noteworthy, the stability depends upon the loading conditions, 
i.e., if in Eq. (5.12) the derivative is taken at constant penetration 
(fixed grip) or constant force (fixed load). To that purpose, adequate 
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expressions for G are directly obtained from Eqs. (4.12) and (4.13): 

(5 .13)  

and 

(5.14) 

This last expression for the energy release rate often occurs in 
Maugis’ papers. From these latter expressions, the general stability 
conditions can be calculated as: 

K ( 6  - 6o(aN2 - - ( F ( a )  - Fo(a))’ G =  
7ra 167ra3K ’ 

or 

at fixed grip and 

or 

- = o  86 
au 

dFO 
~ > - 6 g ( ~ )  
da 

- = o  dF 
d U  

(5 .15)  

(5.16) 

(5.17) 

(5.18) 

at fixed load. 
As a result, these expressions show how the shape of the indenter 

determines the value of the contact radius for which contact break-up 
occurs and, thus, the pull-off force. 

To conclude this subsection, let us consider again Derjaguin’s ini- 
tial paper [I].  Assuming energy balance between the Hertz elastic en- 
ergy, 2Ka5/5R2, and the interfacial energy, 7rwu2, Derjaguin implicitly 
assumed that a variation of contact radius leads to a variation of 
interfacial energy proportional to the full adhesion energy, IV,  that is 
to say that the interactions are very short-ranged, and the displace- 
ment right outside the contact zone is very steep since it spans the full 
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decay length of the interaction potential. This concept, central to the 
JKR theory, is inconsistent with a bare Hertz deformation. 

5.2. Intermediate Range Interactions 

In the case of intermediate range interactions, the results will depend 
upon the balance of the long-range and short-range parts of the in- 
teraction. Thus, exact results require that the interaction be precisely 
described. However, we have shown that for reasonably well-behaved 
interaction potentials, good approximations are obtained when, in 
addition to the adhesion energy, it', the interaction is simply described 
by a typical decay length [16]. We will, thus, now describe the ap- 
proximate analytical models of the JKR-DMT transition one can 
obtain along this line of thought. 

In 1992, Maugis showed, using a constant stress approximation for 
the attractive interaction (Dugdale model), that an analytical model 
could be presented for the contact of spheres [9]. The results show that 
the JKR-to-DMT transition occurs because g(a) decreases to zero 
while F,,, increases to 27rwR as the range of the interactions increases 
to infinity (and their amplitude goes to zero, so as to keep i t '  finite). 

After Maugis, various approximate models have been developed. 
One chooses some reasonable form of the stress distribution outside 
the contact zone: the cases studied thus far were low order poly- 
nomials: constant, linear, and quadratic [ 161. The distribution. how- 
ever, is characterized by a radial extension, c, and an amplitude, cro. 
The solution to the contact problem can be completely calculated ana- 
lytically. as shown above. We, thus, obtain analytical expressions for 
the force, the penetration, the gap and also for the self-consistency 
Eq. (5.2) in terms of a. c and oo. As a result, for each value of the con- 
tact radius, a, and the interaction amplitude, go, the radial extension, 
c, can be calculated numerically from the self-consistency equation, 
and the numerical values of the force and penetration determined. 

Thus, force curves can be calculated for various values of the 
interaction amplitude, oO. Note that cr,] and it' typically specify the 
range of the interactions which is of the order w/cro. Such approxi- 
mation schemes have been shown to reproduce closely the results of 
extensive numerical calculations for definite interaction potentials, at 
a much lower computational cost [15, 161. 
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Another kind of approximation has been introduced recently by 
Johnson and Greenwood [15]. Instead of using a polynomial stress 
distribution in the attractive interaction zone, they introduced an 
ellipsoidal distribution, which lends itself more easily to analytical 
calculations. Actually, we can observe from Eq. (3.9) that this form of 
interaction stems from a low-order polynomial approximation on the 
g function. In the above mentionned instance [15], one has 

g ( t )  c( (c2 - t 2 )  for a < t < c. (5.19) 

Thus, one can anticipate a whole class of such approximations, with 
similar behaviour. 

5.3. Long Range Interactions 

The long-range interactions seem easy to tackle. In this case, we 
assume that the interaction zone spreads out far away from the contact 
zone and, as a result of the finite value of the adhesion energy, the 
amplitude of the interaction is vanishing. Thus, in the self-consistency 
equation, Eq. (5.2), the gap is essentially determined by the shape of 
the indenter, h(r); the additional deformations due to the contact, 
which typically spread out only as a far as a few times the contact 
radius, are negligible. 

In the discussion, we will keep to integer order indenter shape. The 
best known case is the case of the paraboloid. There, we have 

S 
w = I i "  p ( s )  -ds, (5.20) 

As a result, as defined in Eq. (3.2) g(a)  goes to zero; that is to say, 
there is no increase of the contact zone. If we compare the adhesion 
energy, w,  and Fext, we directly obtain that 

(5.21) 

which is the DMT result [2]. Typically, the DMT case is known to 
apply when a sizeable meniscus of condensed liquid surrounds the 
contact zone. 

If the shape of the indenter is described by a higher-order power 
law, then g(a) also goes to zero but, in addition, F,,, also becomes 
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small compared with MI: only the smaller-ranged part contributes, and 
this goes to zero. 

In contrast, in the case of the cone, we observe that g(a)  f u’ while 
F,,, goes to infinity! 

We conclude that, e.ucept in the case oftlze paraboloid, it is physically 
impossible to assume that the interaction zone spreads out far away 
from the contact zone: in the case of higher-order shapes, the gap 
slopes up too fast, while, in the case of the cone, the contact zone 
grows up too fast. In these cases, therefore, we must resort to the 
intermediate range description when the JKR case does not apply. 
Note that in the bi-dimensional case (2D), a similar phenomenon has 
been found when considering the contact of a parabolic indenter: the 
pull-off force goes to zero when the interaction zone spreads out far 
from contact, and no “2D-DMT” limit is observed for a parabolic 
shape [ 3 3 ] .  

These results do not reduce the relevance of the DMT limit. First 
of all, the paraboloidal case is the significant case, since any axisym- 
metric non-conformal asperity will adequately be described for all re- 
levant purposes as a paraboloid. Moreover, the existence of this limit 
is also probably the reason why approximate schemes like those 
mentioned in Section 5.2 are efficient. 

6. INTERACTING SURFACES WITHOUT CONTACT 

The assessment of adhesion energies from pull-off forces thus only 
depends, to first order, upon the range of the relevant interactions. 
We emphasize the fact that the description of the interacting surfaces 
before contact, or after contact rupture, should be consistent with 
the assumptions made for the description of the contact. Thus, if the 
long-range interactions are measured, their contributions to the total 
pull-off force may be calculated and the remaining part ascribed to 
short-range forces, which cannot be measured directly. 

Assuming reversible processes throughout, as we did, the non- 
contact part of the force curve is described by simply specifying the 
stress distribution 
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and the surface deformations computed through Eqs. ( 3 . 2 )  and 
(3.1). As a result, one obtains a continuous curve taking into account 
interactions and deformations with and without contact. A good 
(theoretical) example of such a full force curve can be found in Ref. [S]. 

Thus, if some assumption is made regarding the interaction be- 
tween surfaces for the contact part of the curve, one can check wheth- 
er this assumption is consistent with the measured non-contact part 
of the curve. Parts of the full curve may be inaccessible, however, due 
to instability, either plain physical instability, or more often experi- 
mental instability, due to  the finite stiffness of the measuring system. 

In the absence of instability at contact rupture, the contact radius 
will go to zero, and assuming a regular enough interaction potential. 
it appears that the force curve will be continuous with a continuous 
derivative at zero contact radius. Thus, the zero slope in the DMT 
model at zero contact radius mentioned in the Introduction is due 
to the fact that the dominant force term, F,,,, is a constant equal to 
27rRit'. Under consistent assumptions, it will still essentially be con- 
stant for some distance after contact rupture, so that the slope after 
contact rupture is indeed also zero. Thus, if the interaction is such that 
the slope is not zero after contact rupture, one should conclude that 
the DMT model is not adequate to describe the contact, and that a 
more elaborate model like Maugis' or others should be used. 

We will now elaborate on the necessary consistency between the 
treatment of contact and non-contact parts of the force curve using 
an experimental example. Figure 5 displays the scaled results of the 
full (backward) force curve measured between silica surfaces in dry 
air, as obtained with a very rigid surface forces apparatus [34]. The 
linear non-contact part of the curve allows the long-range interac- 
tions to be described as meniscus-induced. Thus, a Maugis model 
appeared adequate. However, it turned out that it was impossible to 
fit consistently the contact and non-contact data with a Maugis 
model because, for the relevant values of the parameters (A = 0.3), 
no force jump appears in the Maugis model. It, thus, became clear 
that an additional much shorter-ranged force also played a role in 
the interaction. A proper model taking into account two very differ- 
ent length scales was devised [35], which allowed a good fit of the 
data, showing that the long-range interaction (the meniscus force, 
described as in the Maugis model by a constant stress zone, with a X 
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FIGURE 5 Normalized force I'J.  normalized penetration for a silica,silica contact in 
dry air. The experimental points are from Ref. 1341. the model is described in Section 6 
and Ref. [35].  

close to 0.3) accounts for about two-thirds and the short-range inter- 
action (described similarly, but with a very large X arbitrarily taken 
as 10) for one-third of the total adhesion. 

This type of data treatment, therefore, allows some estimate of 
the very-short-range forces to be obtained through the comparison 
of long-range forces and pull-off force. We have also tried to use the 
same approach in the very different context of ultra-high vacuum 
force measurements between a metal tip and oxide substrates [36]. 

7. CONCLUSION 

We have shown that the Sneddon approach to the elastic response of 
a flat surface to axisymmetric loadings is convenient to describe the 
adhesive contact of bodies. I t  allows general and useful expressions 
to be derived easily, and highlights the generic features of the vari- 
ous theories. In addition, the useful extension to the case where the 
surfaces interact but are not in contact is readily obtained. 

We have, thus, introduced the generalized J K R  model under vari- 
ous aspects. Several approximate models for the intermediate cases 
have been introduced and classified. The DMT limit has been shown 
to depend crucially upon the shape of the indenter. 
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APPENDIX A 

We describe the linear elastic response of a flat solid submitted to an 
axisymmetric normal stress distribution, F-. Let us start from the 
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mechanical equilibrium condition 

div(z) + F = 0, 

and the linear elasticity relation 

- 
~ - V E  E =  

Tr(E)s + ~ 

( 1  + v ) € *  
c J =  

( I  - 2 V ) ( l  + v) 
where G is the stress tensor, E the strain tensor, F the external stress 
distribution, n the unit tensor and E and v the Young’s modulus and 
Poisson’s ratio. We will write down an equation for the displacement 
field, u, knowing that the strain tensor is the symmetric part of the 
gradient of the displacement field. 

We now take the axisymmetric nature of the problem into account 
by resorting to the form of Fourier transform which arises in such 
conditions, i.e., the Hankel transform. Indeed, in the angular inte- 
gration of the Fourier transform, one comes across the quantity 

which directly leads to the use of Bessel functions like 

and Hankel transforms. In addition, we take into account the tensor- 
ial nature of the fields we are looking for by noting that the normal 
components, I I , ,  and, F:, of the displacement and force fields trans- 
form as scalars under a rotation around the : axis, while the tangen- 
tial components u,. and F,. transform as vectors. As a result, we will 
selectively use the Hankel transforms of order 0 and 1 as follows: 

P t  Y 

r t x  
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where J 1  is the first-order Bessel function 

From the expressions for the divergence and gradient in cylindrical 
coordinates, and the properties of Hankel transforms, one obtains the 
following equilibrium conditions on the displacement field 

with 

and 

If we now assume that the tangential component, F,., of the force 
field is zero, Eq. (A10) becomes 

C?ii&,i(k,z) - C?2fiz,0(k,~) = O ,  (A14) 

where the operators are defined as 
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Now Oi and 0 2  commute, so that one can introduce a potential 
function, G ( k , ; ) ,  such that, from Eq. (A14). 

t l , o (k , z )  = OIG(k,Z) ,  (A 17) 

U r  I ( k ,  2) = OzC(k, z ) .  (‘418) 

Then Eq. (A14) is automatically fulfilled and since 

Equation (A 

(g 
I ) becomes 

which provides a solution for a solid submitted to an axisymmetric 
distribution of normal stress. 

1. Elastic Surface Loaded Axisymmetrically 

Let us now examine the response of a flat elastic surface submitted 
to a normal stress distribution. We now introduce the boundary condi- 
tions relevant for the surface. The plane of the surface will be chosen 
as z=O.  All fields and, thus, the potential G ( k , z ) ,  vanish above the 
surface ( z  > 0). We assume that the external forces are described by 
the surface distribution, “.o(k)S(z). We are now essentially looking 
for GSing,(k, z ) ,  the singular part of C(k ,  z ) ,  which will give rise to the S 
function on the right-hand side of Eq. (A20). Given the fact that G(k, z )  
is zero in the upper half-space, a cosine transform (on the negative 
part of the z axis) is in order. Introducing the cosine transform of 
Gslng.(kr z )  (denoted Gsing.(k, E ) ) ,  the solution to Eq. (A20) is obtained 
as 

from which, by inverse cosine transform, one gets 

Gslng ( k ,  Z )  = - exp(kz) (A22) 
2( 1 - v ) E  
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for z < 0. By definition, G,,,,,(k,z)=O for z>O. This expression 
provides a solution of the mechanical equilibrium equation, which 
expresses the balance of forces, when a surface is subjected to a surface 
distribution, FZ(r),  of normal forces. It is not, however, a solution for 
a free surface, for the surface shear, in this solution, is not zero. 
Therefore, we now build the zero-surface shear solution. 

2. Frictionless Elastic Surface Loaded 
Axisymmetrically 

The general solution to Eq. (A20) is made up of the singular part we 
have just calculated plus a regular term of the form (A+Bz) 
exp(-kz) +(C+ Dz)exp(+kz), where A ,  B, C and D depend only 
upon k .  Keeping only the term Greg.(kr z) = (C + Dz)exp(+ kz) which 
vanishes when z goes to -00, the general potential is now 

The boundary conditions on the free surface are, using the obvious 
notation: 

Applying the Hankel transform of order 0 to Eq. (A24) and the 
Hankel transform of order 1 to Eq. (A25), again in agreement with 
their tensorial nature, one gets 

From the definitions of G(k,  z), iir,l(k, z) and ii,,,(k, z) (Eqs. (A23), 
(A17) and (A18)) one obtains a system of two linear equations 
in C and D, from which the final solution for a frictionless 
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axisymmetrically loaded elastic surface is obtained as: 

For contact problems, the important general result is that, at  the 
surface ( z  = 0), 

2( I - u2) F:,"(k) 
E k '  G:,o(k) = 

where ~ 2 , , ~ ( k )  [resp. F,,o(k)] denotes Z2,,o(k, z = 0) [resp. F,,o(k, z = O)]. 
This expression is clearly the equivalent of Landau's l / r  Green's 

function in real space [30]. Since kll,,,(k) is essentially the transform 
of the gradient of u,(r), this relation simply states that the normal 
compliance of the surface is K: ~ ' .  

APPENDIX B: USEFUL FORMS OF THE GENERAL 
RESULT AND ITS RELEVANCE TO MIXED 
BOUNDARY CONDITIONS 

As a result of Eq. (A30) and using the inverse Hankel transform (the 
form of which is identical to the direct transform), one can express 
the surface displacement as: 

Now, with the change of variable t = rcos0 in Eq. (A4), one obtains 
the following expression for the Bessel function: 
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that is to say, the Bessel function of order 0 is also the cosine trans- 
form of the function 

O(r - t )  
0.2 - t 2 ) 1 / 2  ' 

where O is the usual Heaviside step function. 
Indeed, let us now introduce the cosine transform of the quantity 

P:,o(k) ,  which is itself the Hankel transform of the axisymmetric 
surface stress distribution: 

one readily gets Eqs. (3.1) and (3.2), by using, for instance, Parseval's 
relation: 

and similarly, 

This trick in the inverse Hankel transform allows one to dispense 
altogether with dual integral equations [22] and Erdelyi-Kober op- 
erators [27]. Now the adequation of this form of solution to mixed 
boundary conditions becomes obvious since u3(r) depends only on the 
values of g(t) smaller than r ,  while F,(s) depends only on the values 
of g(t) larger than s. 

In addition, Eqs. (3.1) and (3.2) can both be inverted through the 
use of inverse Hankel and Fourier transforms, leading to the inverse 
relations (3.6), (3.7), (3.8) and (3.9). 

Let us introduce two additional useful properties of this repre- 
sentation. The total force exerted on the surface F can be easily ex- 
pressed as (Eq. (3.10)) 

- 
F = 2 7 ~  dr?F,(r) = 27rF,,,(k = 0 )  = 27r- i'" 
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where the second equality stems from the Hankel transform and the 
last from cosine transform. 

Similarly, the total mechanical energy, E,  can be calculated 
using Parseval’s relation for the Hankel and the cosine transform 
(Eq. (3.1 111 

where the second equality comes from the Parseval’s relation for the 
Hankel’s transform, the third from the equilibrium relation Eq. (A30), 
and the fourth from Parseval’s relation for cosine transform. 
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